本文共 2144 字,大约阅读时间需要 7 分钟。
matlab代码
N = 20:25;iters = 2.^N;time = zeros(1,length(N));a = 0.111;b = 0.222;for k = 1:length(N) r = 0; t1 = clock; for i = 1:2^N(k) r = 0.5*a + 0.6*b; end t2 = clock; time(k) = etime(t2,t1); endplot(iters, time)xlabel('iter')ylabel('time(/s)')
python代码
N = range(20,26)iters = [2**n for n in N]ts = []a, b = 0.111, 0.222for n in N: t1 = time.time() for i in range(2**n): r = 0.5*a + 0.6*b t2 = time.time() ts.append(t2-t1)_, ax = plt.subplots()ax.plot(iters, ts)ax.set_xlabel('iter')ax.set_ylabel('time(/s)')
结果对比
将两者数据画到一起,方便对比。 结论:随着循环增多,两者消耗时间都线性增大。对于这个测试案例(两个乘法和一个加法)。python约比matlab慢60倍matlab代码
N = 20:25;iters = 2.^N;time = zeros(1,length(N));a = 0.111;b = 0.222;M = [0.111,0.222;0.111,0.222];for k = 1:length(N) r = 0; t1 = clock; for i = 1:2^N(k) r = M(1,1)*a + M(1,2)*b; end t2 = clock; time(k) = etime(t2,t1); endfigure;plot(iters, time)xlabel('iter')ylabel('time(/s)')
python代码
N = range(20,26)iters = [2**n for n in N]ts = []M = np.array([[0.111, 0.222],[0.111, 0.222]])a, b = 0.111, 0.222for n in N: t1 = time.time() for i in range(2**n): r = M[0,0]*a + M[0,1]*b t2 = time.time() ts.append(t2-t1)_, ax = plt.subplots()ax.plot(iters, ts)ax.set_xlabel('iter')ax.set_ylabel('time(/s)')
结果对比
将两者数据画到一起,方便对比。 结论:matlab代码
N = 20:25;iters = 2.^N;time = zeros(1,length(N));a = 0.111;b = 0.222;M = [0.111,0.222;0.111,0.222];for k = 1:length(N) r = 0; t1 = clock; for i = 1:2^N(k) r = M(1,1); end t2 = clock; time(k) = etime(t2,t1); endfigure;plot(iters, time)xlabel('iter')ylabel('time(/s)')
python代码
N = range(20,26)iters = [2**n for n in N]ts = []M = np.array([[0.111, 0.222],[0.111, 0.222]])a, b = 0.111, 0.222for n in N: t1 = time.time() for i in range(2**n): r = M[0,0] t2 = time.time() ts.append(t2-t1)_, ax = plt.subplots()ax.plot(iters, ts)ax.set_xlabel('iter')ax.set_ylabel('time(/s)')
结果对比
猜想正确,仅仅是2*2矩阵索引一个数,python也比matlab慢50倍。转载地址:http://wthd.baihongyu.com/